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Four algorithms for evaluating period-doubling bifurcation points in periodic solutions of 
autonomous systems of ordinary differential equations are presented. Two of the algorithms 
can also be used for nonautonomous systems. The algorithms are applied to three examples: 
two interconnected reaction cells, the Lorenz model and a reactor with periodic forcing. Con- 
vergence properties of the algorithms are shown and a number of computed bifurcation points 
are presented. Convergence of the Feigenbaum sequence is shown for a period-doubling 
cascade in the Lorenz model. 0 1987 Academic Press. Inc. 

I. INTRODUCTION 

Numerical methods in the bifurcation theory of nonlinear dynamic systems are 
currently the subject of much attention. Methods for investigating branches 
stationary solutions (including Hopfs bifurcations) are found in [l-4]. 

A continuation algorithm for construction of the dependence of periodic 
solutions on a parameter is described in [ 5 ]. The branching of periodic solutions is 
reviewed by Sattinger [6] and discussed in [7]. Numerical methods for deter- 
mination of branching points of periodic solutions are studied by Becker and Se 
[S] in the case of the limit point and by the present authors [9] in the case o 
point of period-doubling bifurcation. 

Several authors have evaluated the cascade of period-doubling bifurcations o 
the stable branch by means of sequentially applied dynamic simulation [IQ-12] in 
order to verify Feigenbaum’s theory [13-151 in connection with the transition to 
chaotic behaviour of the system. 

2. DEVELOPMENT OF ALGORITHMS FOR AUTONOMOUS SYSTEMS 

Consider an autonomous system of ordinary differential equations 
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depending on a parameter a. A periodic solution with period T satisfies 

Yi(t + T) = Y,(t), i = 1, 2 ,..., n. (2) 

Substituting t = Tz in (1) generates a system of equations 

d.i 
- = Tfi(Yl,..., Yn, a), dz 

i = 1, 2 )..., n, 

with mixed boundary conditions in the form 

Y,(l) - Vi(O) = O, i= 1, 2 ,..., n. (4) 

For the shooting method choose initial conditions 

Yi(")=xi, i = 1, 2 ,..., n, (5) 

as well as values of the period T and the parameter a. Then system (3) is integrated 
from z = 0 to z = 1. Values of the solution at z = 1 are expressed as 

Yi(l) = (Pi(X*,-, X,, T, a), i = 1, 2 ,..., n. (6) 

Relation (4) has to be valid for any periodic solution. Hence, we have to satisfy n 
equations 

Fj(x, ,..., x,, T, a) = ‘pi(x, ,..., x,, T, a) -xi = 0, i = 1, 2 ,..., n, (7) 

with n + 1 unknowns x1,..., x,, T, and one parameter a. To obtain a periodic 
solution for a fixed a assign a value to xk for some k [S]. The period T cannot be 
assigned because the solution of Eqs. (7) exists for discrete (and a priori unknown) 
values of T only. The procedure will be successful if the chosen value actually exists 
on the trajectory of the kth component of the desired periodic solution y,Jz), 
z E [O, 1). 

Stability of the computed periodic solution is determined on the basis of Floquet 
(characteristic) multipliers, (see [7]), which are the eigenvalues A of the 
monodromy matrix 

B = (t?@x,). (8) 

Elements of the monodromy matrix (and values of dFi/axj in (7)) are evaluated on 
the basis of variational differential equations for variational variables 

p&z) = ayilaxj, i, j = l,..., n. (9) 

These differential equations obtained by differentiating Eqs. (3) with respect to xi, 
are in the form 

-2=T i apti, dp-. 
dz Ix IaYr 

P,(O) = 6, 
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FIG. 1. Schematic representation of bifurcation at the point of period-doubling. (---) stable 
periodic so!utions, (- - -) unstable periodic solutions. A is the amplitude or other representative value of 
the periodic soiutiosl. 

(6, is the Mronecker delta). For elements of the monodromy matrix we have 

13= (P&l)). (11) 

Consider a branch of periodic solutions which depend on tke value of parameter 
CL Stability of the periodic solutions may change at the bifurcation value of 

rameter 111 where a certain characteristic multiplier of the corresponding 
lution lies on the unit circle. This multiplier will be either +I, or 

imaginary. The first case corresponds to limit (turning) points or b~f~rcatio~ 
(crossection, symmetry breaking) points on dependence curves of periodic solutions 

a parameter. The third case mostly indicates a bifurcation to an invariant torus. 
re we shall deal with the second case, that is, with the period-doublin 

cation points. At this point (where the characteristic multipher passes th 
a new branch of periodic solutions bifurcates with the period 
approximately (asymptotically) doubled in comparison with the per-is 
original branch. The situation is schematically shhpwn on Fig, 1; more detailed 
explanation in 17 3. 

The goal of this paper is to construct computational algorithms for direct 
(iterative) determination of period-doubling bifurcation points. 
periodic solution whose characteristic multiplier is -1. In the following we describe 
four iterative algorithms constructed for this purpose. 

Let the characteristic polynomial of the mono romy matrix B be $(A) = 

B(a)=a”+a /I”-‘+a 1”-* I 2" + ... +a,_,a+u,. (12) 

The coefftcients aj are evaluated by the KryHov method r16j. A = --I is t 
the characteristic polynomial (12) if 

F,,,(x ,,..., x,, T,a)=l+ i (-a)iai=o. (13) 
r=I 

As a result we obtain y1+ 1 nonlinear (algebraic) equations (7) and (13) fsr az + 1 
unknowns x1 ,..., xk _ , , xk + 1 ,...) x,) T, ct. The Newton method is used to sobde this 
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system. The first y2 rows of the Jacobi matrix are evaluated on the basis of the 
variational variables, 

dFi 
-&- = q,(l), (14) 

where the variational variables pii and qi = ayj/& satisfy variational equations (10) 
and 

-f+bql+$$, 
Is 1 ah 1 q,(O) = 0, i = 1, 2 )...) Iz. (15) 

The elements of the last row of the Jacobi matrix dF,+ ,/ax,, aF,,+ ,/aT, i3Fn+ ,/da 
are evaluated by means of difference formulas. An “analytical” method using 
variational variables is also possible. However, it is very cumbersome for large n. 

The proposed algorithm: 

(1) Choose initial estimates of x1 ,..., x,, T, CI. The value of xk remains fixed in 
the iteration process. 

(2) Integrate the set of n(n + 2) differential equations (3), (lo), (15) with the 
corresponding initial conditions from z = 0 to z = 1. Evaluate residuals F, ,..., F, + 1 
according to (7) and (13). Evaluate the first n rows of the Jacobi matrix according 
to Eqs. (14). 

(3) Evaluate the last row of the Jacobi matrix by means of finite differences. 
The above mentioned set of n(n + 2) differential equations must be integrated II + 1 
times to obtain the finite difference approximations. Equations (15) are not 
integrated in this step. 

(4) Compute next Newton iteration. If the prescribed accuracy is not fulfilled, 
go to step (2). 

Algorithm II 
The characteristic polynomial (12) must have one root equal to unity because we 

consider the periodic solution of the autonomous system (3) (e.g., [7,17]). The 
polynomial (12) can be decomposed into the form 

P(L)=(/z+1)(L1)(a”-z+p1Y-3 

+ ... +pn-3/Z+pn-2)+CA+D, (16) 

where the coefficients p1 ,..., pnez, C, D are evaluated recursively: 

Pl =a,; p2=a2+1; Pkcak +pk-2, k = 3, 4,..., n - 2; 
(17) 

C=a,-, +P+~, D=a, +P+~. 
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Determining the periodic solution, given that C = 0 and D = 0, produces a perio 
doubling bifurcation point. Therefore, two additional equations 

FN+2(x, ,.., 7 x,, T, a) = 

are to be satisfied at such a bifurcation point. As a result we obtain n i- 2 nonlinear 
equations for n + I unknowns. Use the Gauss-Newton iteration method (see, e.g., 
j183) to solve this system, The Gauss-Newton method seeks the minimum of the 
function 

n+2 

9(x1 ,..., x,, T, a)= c E;‘;(x, ,..., x,, T, a). WI 
i= 1 

In case the obtained minimum is zero, the results correspond to a period-d~~~~i~~ 
bifurcation point. The Jacobi matrix of the system is needed for application of the 
Gauss-Newton method analogously to Algorithm I. Here we compute the two last 

rows of the (n c 2) x (nt 1) Jacobi matrix by means of finite differences. The 
algorithm is quite analogous to Algorithm I. Now evaluate n i 2 residuals (7), (18), 
( 19) instead of n + 1 residuals as in Algorithm I. Note that F,, + 1 in Eq. (13 ) is equal 
to D - C or C - D for n even or odd, respectively. 

The algorithm is based on the same decomposition (16) as Algorithm IF. 
Recurrence relations (17) are also valid. Instead of two equations (18), (19) we add 
only one equation 

F,,, l(xl ,..., x,, T, a) = D = 0. e2%! 

As a result we have a system of y1+ 1 nonlinear equations (7), (21) for .PZ + 1 
unknowns. The Newton method is used as in Algorithm ‘i. If a solution of Eqs. (7): 
(21) is found, it is a periodic solution of (3) P(K) has +ll as a root and, therefore, 
the left-hand side in Eq. (16) is divisible by (A - 1). The first term on the right-hand 
side of (16) is also divisible by (A - 1). Therefore CL4 + D must also be divisible by 
(i; - 1). From the validity D = 0 it follows that C = 0. Numerical realization of the 
Newton method is quite analogous to Algorithm I. We can use Eq. (18) instead of 
Eq. (21) and thus form a modified Algorithm III. 

Algorithm IV 

The monodromy matrix B has -1 as an eigenvaiaue at the period-doubling bifur- 
cation point, i.e., there exists a nonzero vector v = (u,,..., u,,) such that 
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b.(7) 

Ecis(22) 

FIG. 2. The occurrence matrix for the 2n x2n system (7), (22) in Algorithm IV. (*) matrix B-I 
without kth column, (**) matrix B + I without sth column. 

Each nonzero multiple of the vector u is also a solution of Eq. (22). We can, 
therefore, permanently fix one component of the vector a, e.g., 

21, = 1, SE [l, n]. (23) 

As a result we obtain 2n equations (7), (22) for 2n unknowns x1,..., xk- r, xk+ r,..., 
x,, T, a, vl,.,., v,-1, us+l,-., 0,. The Newton method is used to solve this 2n x 2n 
system. The occurrence matrix (the structure of the Jacobi matrix) is shown in 
Fig. 2, where the elements, which can be easily evaluated by using the variational 
variables, are denoted by a circle. 

3. ALGORITHMS FOR NONAUTONOMOUS SYSTEMS 

The system (1) presented above is autonomous. The situation in nonautonomous 
systems is very similar. Consider a system 

dYi 
dt = at, Y, ,*.., Yn, a), i = 1, 2 ,..., n, (24) 

where functions f, are periodic in time t with a known period T. Then periodic 
solutions of Eqs. (24) with only periods mT, m a positive integer, can exist. Thus, 
we have 

yi(mT) - v,(O) = 0, i = 1, 2 )...) n, (25) 

instead of Eq. (4). After choosing the initial conditions (5) and integrating from 
t = 0 to t = mT we obtain, similarly to Eq. (6), 

y,(mT) = ‘pi@1 ,..., x,, a), i = 1, 2 ,..., n. (26) 

Equations 

FAxI ,..., X”, a) = cpi(X, )...) x,, Lx)-xj =o, i = 1, 2,..., n (27) 

have to be satisfied for the periodic solution with the period mT. The stability of the 
periodic solution is governed by eigenvalues of the matrix B in (8), the elements of 
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which can be evaluated by using variational equations similar to Eqs. (10). T 
only difference is that h: = 1 need not be the eigenvalue of B for ~onanto~orn~~s 
systems (more precisely: B has 1 as eigenvalue at bifurcation points, 
points). From this point of view it is clear that only Algorithms I and 
used for evaluation of period-doubling bifurcation points in ~~~anton~rn~~s 
systems. A branch of periodic solutions with the period 2lirlir t 
such points. 

4. APPLICATIONS 

We shall demonstrate the effectiveness of the algorithms on three examples. 

EXAMPLE 1. Consider two interconnected well-mixed cells where chemical reac- 
tions take place. The Brusselator model chemical reaction scheme has been chosen 
L19]. 

The governing equations have the following form (1201, n = 4: 

dy, 
-==-(~+~)Yl+Y:Y,+~~Y,-yy,t, dt 

dy, - = BY1 - Y:Y2 +$ (Y4 - Y2)> dt 

dy, 
-==-((B+l)Y,+Y:Y,+~(Y,-Y3), dt 

4, - = BY3 - Y:Y4 +; (Y, - Yd dt 

Here A, B, p, and a are parameters of the problem, the values A = 2, = 5.9, 
p = 0.1 are used in computations, CI is considered as the bifurcation parameter (it 
characterizes mass transfer coefficient). 

EXAMPLE 2. The Lorenz model [21]. The governing equations arc in the form 

dy, 
yg=v2 -CY1, 

4, 
--&T=rYl-YlY3-Y,> 

43 
--=~1~2 -by,. dt 

The Rayleigh number r is considered as the bifurcation parameter a, the remaining 
parameters are set e = 16, b = 4 (see, e.g., [22, 231). 
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TABLE I 

Examples of Convergence of Algorithms I-III, Example 1, i.e., Model (28) 

Algorithm 

I 

II 

III 

Iteration x2 x3 X4 T a II Fll 2 

0 4.2 0.89 4.4 4.05 1.17 7B3 
1 4.19770 0.88832 4.44148 4.05079 1.17189 2E-5 
2 4.19845 0.88835 4.44238 4.05146 1.17201 6E-11 
3 4.19846 0.88835 4.44239 4.05146 1.17201 3E-19 

0 4.2 0.89 4.4 4.05 1.17 lE-2” 
1 4.19676 0.88849 4.44084 4.05076 1.17186 3E-5 
2 4.19845 0.88835 4.44238 4.05 146 1.17201 lE-10 
3 4.19846 0.88835 4.44239 4.05146 1.17201 7E-19 

0 4.2 0.89 4.4 4.05 1.17 lE-2 
1 4.19856 0.88848 4.44238 4.05169 1.17201 lE-5 
2 4.19846 0.88835 4.44239 4.05146 1.17201 lE-11 
3 4.19846 0.88835 4.44239 4.05146 1.17201 6B22 

a Equal to 4 in Eq. (20). 
Note. Values k = 1 and xk = 2 have been fixed. Initial guess taken from the results of continuation of 

periodic solutions. Point 6 (cf. Table III and Fig. 4) is obtained by all three algorithms. 

EXAMPLE 3. The third model is nonautonomous. A well-mixed reactor with the 
Brusselator chemical reaction and external periodic forcing is described by the 
system of two differential equations [24, 251, 

dy, -=yfy,-((B+l)yl+A+asincot, 
dt 

- = BY, - Y:Y,. dt 

Here a is the bifurcation parameter (amplitude of external forcing) and A = 2, 
B= 6, o = 3 are chosen parameter values. Evidently the period is 
T = 271/w = 2.094395. 

All computations are in single precision arithmetic (N 14 decimal digits) on the 
computer CYBER 175. Examples of the course of the Newton method (Algorithms 
I-III) for the problem (28) are shown in Table I, for Algorithm IV in Table II. 
Initial guesses originated approximately from the results of continuation of periodic 
solutions in dependence on the parameter M. Results of one such continuation [26] 
(obtained by the DERPER algorithm described in [S]) are presented in Fig. 3. 
Four period-doubling bifurcation points exist on the isolated and closed depen- 
dence curve of periodic solutions on the parameter a. They are presented in 
Table III as points 14. Every bifurcation points is presented four times because the 
course of yr(z), ZE [0, l), intersects four times the line vi(z) =x1 = 2 given by the 
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choice xk = 2, k = 1, for every periodic solution corresponding to points l-4 in 
Table III. Some additional bifurcation points are presented in Table III (cf. the 
solution diagram in Fig. 4 [26]). 

Several period-doubling bifurcation points of the Lorenz model (29) are presen- 

TABLE III 

Period-Doubling Bifurcation Points of Problem (28) 

Point No. x2 x3 T a 

1 
Et 

i 

2 
i 

i 

3 
t 

z 

4 
t 

: 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

4.56568 1.01370 4.80562 
3.02534 0.90140 3.14959 
5.58827 1.61580 5.72439 
3.06067 0.89496 3.18858 

12.62766 1.27471 

3.12258 0.86612 3.26192 
3.68848 0.87736 3.88267 
3.01182 0.87130 3.13921 
5.72536 1.69797 5.83894 

11.59421 1.22382 

3.25999 0.86603 3.41344 
3.33969 0.86674 3.50115 
3.01846 0.87105 3.14640 
5.64508 1.60500 5.78922 

11.47081 1.22556 

3.13884 0.85654 3.28176 
3.60126 0.86378 3.79038 
3.02023 0.86115 3.15017 
5.57275 1.48779 5.75492 

11.83646 1.20614 

2.89396 1.34039 2.98738 13.60085 1.25089 
4.19846 0.88835 4.44239 4.05146 1.17201 
3.02995 0.85167 3.16255 8.52194 1.18940 
3.23090 0.85069 3.38517 17.03632 1.19239 
5.15225 1.13527 5.41485 34.07662 1.19307 
3.00563 0.88225 3.13062 8.54342 1.24307 
3.03094 0.90653 3.15410 8.23751 1.29353 
5.56151 1.61440 5.69636 16.47603 1.29325 
3.02443 1.08913 3.12963 4.89756 1.47021 
5.20789 1.56382 5.33925 9.79634 1.46909 
5.21049 1.56643 5.34122 19.59387 1.46882 
4.49352 1.00470 4.73403 18.01466 1.24686 
4.02058 0.88784 4.24570 20.87305 1.20131 
5.56447 1.47919 5.14906 23.67249 1.20668 

Note. Values k = 1 and xk = 2 have been fixed. The numbering of the points is the same as in Figs. 3 
and 4. Points l-4 are on an isolated branch of periodic solutions, see Fig. 3; each point is presented in 
four different forms (a-d) to demonstrate that the course of yl(z), ZE [O, 1), has four intersections with 
X, = 2. On the other hand, only one representation of points 5-18 (cf. Fig. 4) is presented. 
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6.6 

AI 

6.4 

FIG. 3. The solution diagram of periodic solutions of (28) in dependence on the parameter a. A, is 
the amplitude of y,. Points of period-doubling bifurcation are denoted by ( * ), the numbers agree with 
Table III. (---) isolated dependence of periodic solutions with the period Tz 11-13. (- - -) branches of 
periodic solutions with the double period TX 22-26. 

ted in Tabie IV. These points have been successfully computed by the aid of all fo(pur 
algorithms. Results in the table correspond to a cascade of period-do~b~i~ ifur- 
cations (cf. Fig. 5 [23]). The values of the parameter Y at the individual ~~~rc~t~o~ 
points form a Feigenbaum sequence {Y,) [13]. The values 

6, = 
Yj - Yj- 1 

rj + 1 - r~ 

I I - , 
1.2 1.3 1.4 1.5 Lx 

I ----------------~~~~,3,14,~ 

/ 

:- 
.‘;- \ 

---__-_--j '<. 
' .J , I 

‘2\ 
'-\ , 

I 
-,-I 

1.2 1.3 1.4 

FIG 4. The solution diagram of periodic solutions of (28). A, is the amplitude of y1 Points of 
period-doubling bifurcation are denoted by (5 ) and numbered according to Table III. (---) s?abie. 
(- - -) unstable. 
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TABLE IV 

A Cascade of Period-Doubling Bifurcation Points in the Lorenz Model (29) 

1 20.90946 273.34849 0.30618 356.93391 
2 16.85987 246.64055 0.63009 338.06197 4.9740 
3 21.19530 259.36006 1.26750 334.26789 4.7313 
4 17.29002 244.99724 2.53818 333.46599 4.6824 
5 17.24223 244.70901 5.07771 333.29472 4.6707 
6 17.25889 244.74356 10.15599 333.25806 

Nate. Values k = 1 and xk = 3.82038 have been fixed, r is considered as the bifurcation parameter CI, 
ri is the bifurcation value on the jth branch of the cascade (cf. Fig. 5). 6, is defined by Eq. (31). 

are presented in Table IV, too. We observe very good convergence to a limit, which 
is approximately S* z 4.6692 [ 131. 

A success of individual algorithms in dependence on initial guesses for the model 
(28), i.e., the Brusselator model, is studied in [27]. Initial guesses are generated 
randomly from given intervals and all four algorithms are compared for the same 

TABLE V 

Period-Doubling Bifurcation Points in 
the Nonautonomous Problem (30), A = 2, B = 6, w = 3 

m Point No. xi X2 c1 

1 1 1.71831 2.82302 0.85929 
2 1.07223 3.19165 1.67532 

2 3 0.90362 4.84987 0.49000 
4 1.19253 5.43587 1.08628 

4 5 0.94915 4.71126 0.49267 
6 0.57548 4.18641 0.79980 
7 0.95978 3.59215 0.87795 
8 0.86297 3.54160 1.08437 

6 9 0.95481 4.71477 0.49518 
10 2.35876 2.86705 0.69611 
11 1.93724 2.75792 0.81108 
12 0.79190 6.60985 0.81895 
13 0.86362 6.04998 0.91460 
14 4.79358 1.28787 0.92512 
15 3.19709 3.19230 0.97113 
16 1.28865 5.42704 1.08228 

7 17 0.74489 4.64816 0.44548 
18 1.36023 3.11399 0.67755 

Note. The points are numbered in agreement with Fig. 6. 
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300 320 340 360 r 

FIG. 5. A cascade of period-doubling bifurcations in the Lorenz model (29) and r is considered as 
the bifurcation parameter a. For numerical values see Table IV. A, is the amplitude of y,, (---) stable, 
(-- -) unstable. 

guesses (a random choice of vi is used for Algorithm IV). Generally speaking, a8 
four algorithms are comparable. However, we can obtain different solutions by 
using different algorithms, because a large number of solutions exist in the m 
(28) (cf. Table III). Algorithm IV can sometimes be less successful because of a 
guess of ui (we have no information about their values in advance). 

O/ I 
0.4 0.6 08 1.0 1.2 1.4 16 4.8 d 2.0 

FIG. 6. The solution diagram of m-periodic solutions of the nonautonomous system (30). A=& 
B = 6, w = 3 (T= 2.094395). Points of period-doubling bifurcation are denoted by (- ) and numbered in 
agreement with Table V. (&-) stable, (-- -) unstable. (Erratum: ol,,,,,, = o( - 0.1 for 112 = 7 curve.) 
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Some resulting period-doubling bifurcation points of the nonautonomous 
problem (30) are presented in Table V. The solution diagram of periodic solutions 
is shown in Fig. 6 [28], the period-doubling bifurcation points (on the branches 
with m = 1,2,4,6,7) are denoted in the figure. We can obtain the solutions for 
m = 2 twice because of a T-shift (generally m-times) if we plot x1 in dependence on 
the values of the parameter. 

Note that the presented algorithms compute bifurcation values of the parameter 
to very high accuracy (depending on the accuracy of the integration routine used 
and the round-off errors of the computer). 

5. CONCLUSIONS 

Four algorithms for evaluating period-doubling bifurcation points presented in 
this paper can be easily used for most autonomous nonlinear dynamic system of 
low order, say y1< 20. The use of the algorithms is limited by the applicability of the 
shooting method. If the initial value problems are unstable, i.e., there are multipliers 
of the order 10’ or higher, the integration, and thus the simple shooting method, 
usually fails. Multiple shooting methods could be used in such cases. A simple 
modification of Algorithms I and IV presented in the paper can be used when we 
have a nonautonomous system with periodic right-hand sides (cf. Example 3). Con- 
vergence properties of the algorithms are good, moreover, results from a con- 
tinuation algorithm can be used as good initial guesses for the Newton method. 
Starting points on emanating branches of solutions used for the continuation 
algorithm can be determined [29] after evaluation of the period-doubling bifur- 
cation point. 
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